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Using the replica formalism, we evaluate the storage capacity and the generalization error of a
perceptron with a reversed-wedge transfer function and binary synaptic weights. Remarkably, both
the storage capacity and the generalization threshold saturate the information theoretic (respectively
upper and lower) bound o = 1 for a specific choice of the width of the reversed wedge, suggesting
that this perceptron may be an interesting building block for neural networks.

PACS number(s): 87.10.4¢, 05.50.4+q

During the last decade, the interest in neural net-
works has grown considerably. The questions at
hand—memory, information processing, learning, and
cognition—are of great fundamental importance, being
related to the very nature of intelligence, but possess at
the same time an enormous technological potential. This
is so because neural networks hopefully share some of the
more desirable properties of the human brain, such as a
high degree of parallel operation, robustness, and flexi-
bility. From the theoretical point of view, the attention
has been focused on simpler networks, such as Hopfield
networks or perceptrons which serve as building blocks
for more complicated networks, and for which an ana-
lytical treatment becomes possible [1-3]. A particularly
well-studied example is the case of the Ising perceptron
[4-11], which is a normal perceptron but with the re-
striction that its weight vector components take only the
values +1. Both storage capacity and generalization er-
ror have been studied in the limit where the number of
training examples p and the dimension of the input space
N go to infinity with a fixed value of their ratio a = p/N.
Krauth and Mézard [6] obtained o = 0.83 for the stor-
age capacity from a one-step replica symmetry breaking
calculation. This result was confirmed by simulations
carried out by Krauth and Opper [7]. Gyorgyi [8] (see
also [5,9]) studied the generalization error of an Ising per-
ceptron learning examples generated by an Ising teacher
perceptron and showed that a discontinuous transition te
perfect learning (zero generalization error) takes place at
a = 1.245. These a values have to be compared with the
value a = 1, which is at the same time an upper bound
for the storage capacity (since one component of the Ising
weight vector can store at most one bit of information)
and a lower bound for the threshold to zero generaliza-
tion error (since one training pattern can convey at most
one bit of information about the teacher). The fact that
these bounds are not realized may at first look like the
price to be paid, on the one hand, for the parallel and dis-
tributed character of the perceptron as a memory device
and, on the other hand, for the fact that the information
carried by randomly chosen examples will always exhibit
a certain amount of redundancy. In the present paper,
we show that this need not be so, and report on a sim-
ple variant of the perceptron for which both information

1063-651X/95/51(6)/6309(4)/$06.00 51

theoretic bounds are actually saturated. This surprising
result shows that the maximum rate of one bit infor-
mation transfer per example up to full capacity of the
network can be achieved in a distributed memory as well
as in a process of learning from random examples.

The model under consideration is the Ising version of
the so-called reversed wedge perceptron [12-14]. It re-
turns the following binary output classification &, on an
N-dimensional input pattern f

_ J-€
cubG)] o

9(z) = (z + K)z(z - K) . (2)

with

The weight vector J is taken to be of the Ising type
J; = £1,7 = 1,...,N. Also, all the patterns will be
assumed to be normalized as I{|2 = N. For the value
K = 0, one recovers the familiar signum transfer function
of the normal perceptron. A choice K > 0 corresponds
to the insertion of a wedge of width 2K around z = 0 or,
geometrically speaking, to the introduction of two extra
hyperplanes, parallel and on both sides of the hyperplane
orthogonal to J through the origin. Hence the reversed
wedge perceptron can perform classifications, such as the
XOR, which need not be linearly separable.

Let us first address the storage capacity problem of
the Ising reversed wedge perceptron. The idea is to find
an Ising vector J such that it correctly reproduces the
classification &# for a set f“ of patterns o = 1,...,p.
These patterns and their corresponding classifications are
assumed to be chosen at random and independent of each
other. The number of Ising vectors that are compatible
with these classifications is clearly given by the following
expression:

P J.én
Q= 6 g(—)&é‘) 3)
fz{Zﬂ}N};[l ( \/N

with 6(z) the Heaviside function. € is of course a random
number. However, in the limit N — oo and p — oo with
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the ratio @ = p/N fixed, one expects that InQ is a self-
averaging quantity. Using the replica trick with a replica
symmetric ansatz [15], one obtains the following result
for the intensive entropy:

. (InQ)
S MmN
+oo
= ﬁ(g {——(1 —q)§+ Dz In <2 cosh(z\/é))
“+oo
+a Dt 1n</ Dm)] (4)
—oo g(z2+/T—q—t,/q)>0

where Dz = dx exp(—z2/2)/v/2n. The value of the pa-
rameter g, (with conjugated variable §), which extrem-
izes the expression in the right-hand side of this expres-
sion, has the physical meaning of the typlcal overlap
q= J1 Ja /N between two solutions Jl and J2 that cor-
rectly reproduce the classifications of the patterns under
consideration. When this overlap goes to 1, one expects
that the space of compatible solutions shrinks to zero so
that this criterion could be used to identify the storage
capacity. However, it is then found that the correspond-
ing entropy is negative and that the predicted value of
the storage capacity lies above the rigorous information
theoretic upper bound a@ = 1. One concludes that replica
symmetry must be broken. To get around this difficulty,
we will identify the storage capacity as the value of a for
which the entropy becomes zero. The principle of com-
bining replica symmetry with a zero entropy criterion
has been shown to be equivalent to a one-step symmetry
breaking in several cases [6,16-18], including the present
problem for K = 0, and is widely believed [19,20] to give
the correct result when the saddle point is locally stable.
The resulting a versus K curve is reproduced in Fig. 1,
together with the numerical results obtained from ex-
tensive simulations. The agreement between theory and
simulation is very good. For K = 0, we of course recover
the well-known a = 0.83 value. Remarkably, the stor-
age capacity increases with K until the maximal value
o = 1 is reached for K = +/21n2. For larger values of K,
the storage capacity decreases to fall back, as expected,
to the initial value @ =~ 0.83 for K — oco. The capac-
ity o« = 1 for K = v/21n2 implies that the storage is
optimal. A capacity a = 1 was also found for a parity
machine with K > 2 hidden units with nonoverlapping
receptive fields [21].

We now investigate how the reversed wedge Ising per-
ceptron can learn from examples generated by a teacher
which is also a reversed wedge perceptron characterized
by an Ising weight vector T. As we mentioned before,
the value o = 1 is now a lower bound for reaching error-
less generalization. We first present a simple annealed
calculation, along the lines of the work by Gardner and
Derrida [4,5]. It sheds light on the special properties of
the reversed wedge for K = v/21n 2, while it also provides
an upper bound for the generalization threshold. Con-
sider the reversed wedge Ising perceptrons J which have
a given overlap R = J- T/N with the teacher. In the
limit N — oo, the number of such perceptrons is given
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FIG. 1. Storage capacity [from the zero entropy criterion,
cf. Eq. (4)] and threshold to errorless generalization [from the
annealed calculation, cf. Eq. (7), and from the zero entropy
criterion, cf. Eq. (8)] for the reversed wedge Ising perceptron,
as a function of the width K of the wedge. The numerical
results are an extrapolation from the results for N = 13 up to
N = 19 (obtained through exact enumeration over the Ising J
vectors and averaged over the choice of 10000 pattern sets).

For K = v/2In2 the quenched and annealed generalization
errors coincide.
by
1-R. 1-R
Q,(R) ~ exp{ N In
2 2
1+R. 1+R
———In— . 5
5 5 } ()

The corresponding generalization error e(R), defined as
the probability for disagreement between student and
teacher on the classification of a randomly chosen pat-
tern, is found to be

e(R) = 2/ Dy / Dz . (6)
g9(y)>0 g(zv1I—RZ+yR)<0

For the particular choice K = 0, one recovers the famil-
iar result €(R) = arccos R/w. The average number of
perceptrons with overlap R that is still compatible with
the classification generated by the teacher on p random
examples is given by (Q(R)) = Q,(R)[1 — ¢(R)]?. The
compatible students, corresponding to the R value, that
maximizes this expression, are on average exponentially
more numerous than the others and determine the value
of the annealed intensive entropy:

In{Q
Sannealed = 1\/1}—)00 < ) (7)
1-R, 1-R
= max|— In
R 2
1+R, 1+ R

- In —5 - + aln[l — e(R)]

The generalization error is obtained by substituting this
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R value, which is a function of «, into Eq. (6). It is
clear from Eq. (7) that the location of the maximum in
R is determined by the competition between the number
of perceptrons with a given value of R and their cor-
responding generalization error. ,(R) is maximal for
R = 0, which corresponds to the perceptrons orthogonal
to the teacher. On the other hand, ¢(R) is a monotonous
decreasing function of R [with e(—1) = 1, €(0) = 1/2,
and €(1) = 0], and the effect of the training examples
is clearly to favor the student perceptrons that have a
larger overlap with the teacher by preferentially elimi-
nating those with large generalization error. As a result,
one expects that the R value that maximizes the expres-
sion in the right-hand side of Eq. (7), will increase with
a, starting with the value R = 0 (and Sapnealed = 1In2)
for @ = 0, while the corresponding values of the intensive
entropy and the generalization error decrease. Further-
more, the expression in the right-hand side of Eq. (7) is
equal to zero for R = 1, so that the annealed entropy
can never be negative. One thus finds that a discontin-
uous transition from finite generalization error (R < 1)
to zero generalization error (R = 1) takes place at the
critical threshold value of a for which Sapnealeq first be-
comes zero. This a value is reproduced in Fig. 1 as
a function of K under the name of annealed approxi-
mation. For K = 0, one recovers the Gardner-Derrida
result & ~ 1.45 [4]. As the value of K increases, the
critical value of a decreases until, again for K = v/21In2,
the transition to perfect generalization occurs right at
the lower bound a@ = 1 imposed by information the-
ory. Moreover, since the annealed calculation gives an
upper bound, the latter result must also be exact. This
surprising result can be understood from the fact that
the generalization error €¢(R) has a horizontal inflection
point at R = 0, €(0) = €'(0) = 0, for K = v2In2.
Consequently R = 0 is a maximum in the expression ap-
pearing in the right-hand side of Eq. (7) for all values
of a. It remains the absolute maximum until the an-
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FIG. 2. Quenched generalization error of the reversed

wedge Ising perceptron in function of « for several values of
K. These curves are obtained by inserting the R value that
extremizes Eq. (8) into Eq. (6).

nealed entropy becomes zero. The picture that emerges
is quite astonishing. For a < 1, every new training exam-
ple reduces the space of compatible perceptrons by half
[Sannealea = (1 — ) In 2], while the students orthogonal to
the teacher retain their exponentially dominant major-
ity with corresponding generalization error €(0) = 1/2.
At o = 1, all the students except for the teacher him-
self have been eliminated, and a discontinuous transition
takes place from no generalization €¢(0) = 1/2 to perfect
generalization €(1) = 0, cf. Fig. 2.

Going beyond the annealed calculation, we have also
performed a replica-symmetric calculation of the gener-
alization error. The classification of the examples is no
longer random, since it is generated by the perceptron
teacher, and the intensive (quenched) entropy is now
given by the following formula:

s = extr —1(1 +R)R + DzlIn <2cosh(z\/E+R))
{RR} | 2 —o0
-+o00
+2a Dt / Dy In / Dz , (8)
—oo a(y)>0 g((z—tvR)v/I—R+yR)>0

where the R value that extremizes the right-hand side in
Eq. (8) corresponds to the typical value of the overlap be-
tween a compatible student and the teacher perceptron.
It determines, through Eq. (6), the generalization error
in function of a. Furthermore, we identify the location
of the discontinuous transition to perfect generalization
as the value of o for which the entropy given in Eq. (8)
becomes equal to zero. The zero entropy criterion com-
bined with replica symmetry is again expected to give
the correct result, although this has, to our knowledge,
not yet been confirmed by an explicit replica symmetry-
breaking calculation. The resulting o versus K curve is
reproduced in Fig. 1. This curve lies, as required, under

[
the curve corresponding to the annealed approximation,
and is in good agreement with numerical simulations. In
Fig. 2, we have also represented the generalization error
€(R) in function of a for some values of K, including the
particular case K = +/21In 2.

In conclusion, we have calculated the storage capacity
and generalization error of a reversed wedge Ising per-
ceptron, with transfer function defined by Eq. (1), and
shown that the case K = +/21n2 saturates the infor-
mation theoretic bounds for storage and generalization.
Since this perceptron seems to store or utilize informa-
tion in a more efficient way than the normal perceptron,
while keeping its basic distributed and parallel architec-
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ture, we suggest that it may be an interesting choice as a
building block for more complicated multilayer or multi-
connected networks. At the same time, it illustrates that
there are no inherent limitations, other than the infor-
mation theoretic bounds, for such architectures to store
or transfer information.
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